\(\int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx\) [643]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 149 \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{3/2} d}+\frac {\text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{3/2} d}-\frac {2 b \sqrt {\tan (c+d x)}}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[Out]

-arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I*a-b)^(3/2)/d+arctanh((I*a+b)^(1/2)*tan(d*x+c
)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I*a+b)^(3/2)/d-2*b*tan(d*x+c)^(1/2)/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3649, 3697, 3696, 95, 209, 212} \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {2 b \sqrt {\tan (c+d x)}}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}+\frac {\text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}} \]

[In]

Int[Sqrt[Tan[c + d*x]]/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

-(ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]/((I*a - b)^(3/2)*d)) + ArcTanh[(Sqrt[I*a
 + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]/((I*a + b)^(3/2)*d) - (2*b*Sqrt[Tan[c + d*x]])/((a^2 + b^2
)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(a^2
+ b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*
(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 b \sqrt {\tan (c+d x)}}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {2 \int \frac {-\frac {b}{2}-\frac {1}{2} a \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2} \\ & = -\frac {2 b \sqrt {\tan (c+d x)}}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a-b)}+\frac {\int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a+b)} \\ & = -\frac {2 b \sqrt {\tan (c+d x)}}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 (i a-b) d}+\frac {\text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 (i a+b) d} \\ & = -\frac {2 b \sqrt {\tan (c+d x)}}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b) d}+\frac {\text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b) d} \\ & = -\frac {\arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{3/2} d}+\frac {\text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{3/2} d}-\frac {2 b \sqrt {\tan (c+d x)}}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.30 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.09 \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {\frac {\sqrt [4]{-1} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(-a+i b)^{3/2}}+\frac {\sqrt [4]{-1} \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(a+i b)^{3/2}}-\frac {2 b \sqrt {\tan (c+d x)}}{\left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{d} \]

[In]

Integrate[Sqrt[Tan[c + d*x]]/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(((-1)^(1/4)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(-a + I*b)^(3/2)
 + ((-1)^(1/4)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(a + I*b)^(3/2)
 - (2*b*Sqrt[Tan[c + d*x]])/((a^2 + b^2)*Sqrt[a + b*Tan[c + d*x]]))/d

Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 0.93 (sec) , antiderivative size = 798213, normalized size of antiderivative = 5357.13

\[\text {output too large to display}\]

[In]

int(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(3/2),x)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7445 vs. \(2 (121) = 242\).

Time = 1.39 (sec) , antiderivative size = 7445, normalized size of antiderivative = 49.97 \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\tan {\left (c + d x \right )}}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)**(1/2)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(sqrt(tan(c + d*x))/(a + b*tan(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {\sqrt {\tan \left (d x + c\right )}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(tan(d*x + c))/(b*tan(d*x + c) + a)^(3/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\tan (c+d x)}}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(tan(c + d*x)^(1/2)/(a + b*tan(c + d*x))^(3/2),x)

[Out]

int(tan(c + d*x)^(1/2)/(a + b*tan(c + d*x))^(3/2), x)